
values of dQ/dt determined from the formula from [4] and from (1.6) does not exceed 30%)~ 
Curve I corresponds to T = 0.03, curve 2 to T = 0.05, and curve 3 to T = 0.I eV. It is evi- 
dent that there is a satisfactory agreement. 

Thus, the analytical description of the vibrational relaxation agrees satisfactorily 
with the experiment and numerical computations. 

The authors thank A. Kh. Mnatsakanyan for helpful discussions. 
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VIBRATIONAL RELAXATION IN AN ISOTHERMAL SYSTEM WITH A ~-~JNCTION SOURCE 

OF MOLECULES 

T. Z. Kalanov UDC 536.48+539.194+539.196 

w In the intensive investigations being conducted into the properties of molecular 
lasers, and the mechanism and kinetics of gas-phase reactions, there is at present a great 
deal of interest in studying the nonequilibrium distribution function of molecules over the 
vibrational energy levels in systems with sources of particles [i]. Vibrationally excited 
molecules can arise, for example, in the pulsed photolysis of gas mixtures, in the recombi- 
nation of atoms and radicals, in combination and exchange reactions [2], and in electrical 
discharges, optical excitation, etc. 

The problem of determining the populations of the levels is most simply formulated in 
the case when the molecules introduced into the system are characterized by vibrational en- 
ergy E v (pulsed photolysis), and so the source is a ~-function. This situation was studied 
in [3, 4], where the quasistationary distribution function wasobtained corresponding to the 
times TI << t << To (rl is the progressive vibrational relaxation time, and To is the time 
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during which the ~-function source of constant power acts). The aim of the present paper 
is to analyze the distribution of molecules over the vibrational levels for an arbitrary re- 
lation of the times T, and To (nonstationary problem), as well as the behavior of vibrational 
energy. We shall consider a small amount of impurity, in the form of diatomic molecules mod- 
elled by harmonic oscillators, in an inertgas (thermostat). Vibrational relaxation is de- 
scribed by the following system of kinetic equations for the populations x n of the levels~ 

dxn/dt  = ZPlo{ (n  + l)xn+1 - -  [(n + l )e-o + nlx= + rte-oa~n_l} -~ Tinny , n = O, I, 2 . . . . .  ( 1 . 1 )  

where P~o is the probability of the vibrational transition i + 0, calculated for one colli- 
sion; Z is the number of collisions per second between molecules and atoms of the reservoir, 
as calculated from gas-kinetics; q is the source power, i.e., the number of vibrationally 
excited molecules with energy E v arising per unit volume per unit time; ~nv is the Kronecker 
delta; and ~=h~/kT. The coefficients in Eq. (i.i) are independent of time. Equations for 

the number of molecules N(t) = %7 .a~xn(t) and vibrational energy E(t)= he \~ _ nx n (t) per unit 
n=O ~t=O 

volume can be obtained from the system of equations (I.i) without solving it. Standard meth- 
ods give 

dE (t) _ 

dt 

w h e r e  ~I ---- [ZPIo(I - -  e -~  

The linear equations (1.2), 

dN( t ) /d t  ---- *l; 

E (t) -- h~ [e--~ -- e--O)] N (t) -1- ~]vho), 
TI 

(1.3) have the following respective solutions: 

(1.2) 

(1.3) 

N(t )  --  A r -[- ~lt; ( 1 . 4 )  

E ( 0  = E ~ + [E (0) - -  E~ e - ' /~ '  + _ n  EOt + ~ (moE,; --  EO) ( t  -- e-'~'),  
N o  ~ o 

(1.5) 

where No is the number density of molecules in the system before the source is switched on; 
E~ he [e-~ e-e)] No is the equilibrium value of vibrational energy; and E~= vh~. [In the 
second term of Eq. (1.5), 0~t < =, while 0~t~To in subsequent terms.] The first two 
terms in Eq. (1.5) describe the relaxation of vibrational energy due to the initial nonequi- 
librium value of E(0). The third term shows that the increase in stored equilibrium energy 
occurs due to the linear increase in the number of molecules in the system. The fourth term 
describes the increase in vibrational energy due to the difference between the equilibrium 
(E ~ and nonequilibrium (NoEv) values of energy. Thus, the action of a 6-function source 
leads to the appearance of stored nonequilibrium vibrational energy in the system, which in- 
creases with time from zero to a constant value. However, it should be noted that the type 
of source affects only the magnitude and not the structure of the last term in Eq. (1.5). 

w We shall construct the general solution of the inhomogeneous system of equations 
(i.I) using the fundamental matrix of solutions of a system of homogeneous equations (cf. [5], 
for example). The general solution of the system of homogeneous equations corresponding to 
Eq. (I.i) has the form [6] 

where G n ( m  ) = e - " ~  ( l  - -  e~ i 
4=0 

x,~(t) = 2 a , , ,G , (m)  c -~ t /T ' '  ( 2 . 1 )  
m ~ O  

are the Gottlieb polynomials, and a m are coefficients de- 

termined by the initial conditions. We shall find the fundamental matrix. The set of func- 
tions 

xnra(t, to) = G n (m)e -rm/~' ( 2 . 2 )  
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for each value of m = 0, I, 2, . is a particular solution of the system of homogeneous 
equations, bounded with respect to the norm, and satisfying certain initial conditions for 
t = to. Since any (bounded) solution Xn(t)~of such a system can be represented in the form 
of Eq. (2.1), the system of functions Xnm(t , to) is a fundamental system of solutions. We 
normalize the matrix 

<I/(t) = {xn,,~(t,  to)}  

of the fundamental system of solutions at the point t = m (m is an arbitrary time): 

<~*(0 = a~(0<J~-'(~). 
At t = T the "fundamental matrix ~*(t) becomes a unit matrix. 

tion and normalization conditions for the Gott!ieb polynomials, 

m=0 

(6ns  i s  t h e  K r o n e c k e r  d e l t a ) ,  we f i n d  t h e  c o n s t a n t  m a t r i x  ~ - l ( m ) :  

, b - '  (~)  =- {x,,,~ (~, to)} = {e-"~ (m) e~'l~'e~~ ( l - e - ~  

Using the orthogonaliza- 

( 2 . 3 )  

(2.4) 

When Eqs. ( 2 . 2 ) ,  (2.4) are taken into account, the matrix ~*(t) takes the following form: 

oc 

x,,~ (t, "c) : V__ G,, (m)e .. . .  ~"~'G.~ (m)em~"r'e-rn~ s~ (1 - -  e - ~  
m l) 

The general solution of the system of inhomogeneous equations (i.i) is written as follows, 
with the help of the fundamental matrix ~*(t): 

:x) 

x , , ( t )  ~ :  .<" ~<.,G,,(m)e-':'/" ~-, i ~ ~.  n~.oa. (m)~ -m</''. a~ (m) ~'~/"~-'~~176 ( l  -- ~-~ (2.5) 
~l =0 b m=0, 

s=0 

where we have set t:o = 0 for simplicity, i.e., the source is switched on at zero time. 

Carrying out the integrations and summations in Eq. (2.5) with respect to s, we obtain 
the distribution function of molecules over the vibrational levels: 

X n ( l )  = .,~'~ o~mG,,(t~'t) e-mt/'~' -~- v l / e - - ' ~  ( 1- - e - o )  -i-'~lOm,~ilGn(l'n) av(l'n) ( t  - -  e--rat/T'). 
m=O 

(2.6) 

As in the case of Eqs. (1.4), (1.5), the first term here describes the relaxation of the 
initial state of the system. The second term results from the well-known fact [3, 4] that 
molecules in the vibrational levels are replenished only at the expense of the "old" mole- 
cules with a Boltzmann distribution. The third term (which, following the terminology of 
[3, 4], we shall call the "perturbation function") describes the redistribution of molecules 
over the levels caused by the source. (We note that in the first term 0~t < =, while 0 ~ 
t ~To in the second and third.) 

w The perturbation function in Eq. (2.6) has a fairly complex form. We shall thus 
restrict ourselves to treating extreme cases. 

i) Let t/~1 << I. Then, expanding the time factor in Eq. (2.6) in a Maclaurinseries and 
using the property (2.3), we have, in the linear approximation, 

oo 

xn(t ) = ~V ~r~Gn(m.)e--mt/T,@ ~ltSn~" ( 3 . 1 )  
ra=O 

It follows from Eq. (3.1) that for t ~ TI the action of the source leads to a linear growth 
of population of the level v only. This explains the appearance of population inversion of 
the levels v and v -- i. Setting Xn(0) = No(l -- e-0)e -n0 for simplicity, the inversion 
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condition Xv/Xv_, > 1 for the case e -8 ~ I (low temperatures), which is important in prac- 
tice, can lead to the inequality 

v >, I + (UO) ln(No/~lt ). 

It is clear from this that as the power of the source increases, population inversion can be 
achieved for lower v levels. 

2) If Tz ~ t ~ To (quasistationary case), the solution (2.6) passes to the expression 

~ e -too 
x . ( t ) =  No(l -- e - ~  -no  q- r l t ( l  - -  e -O)e  - " 0  q- Zp,omZ.~__, C,~(m)Gv(m) m (3.2) 

The infinite sum on the right-hand side of Eq. (3.2) can be represented as follows. Intro- 
ducing the symbol 

and setting 

~evO 2 e--toO 

m = l  

x.(t) = No( i  ~ e-O)e - ' '~ -[- ~ t ( t  - -  e-O)e - ' o  -i" f~ 

in the initial equation (I.i), we obtain a system of algebraic equations for fn. This sys- 
tem. of algebraic equations can be solved fairly simply, and the solution has the form [3, 4] 

T} ~ e toO- I emO 
= m 6z- l , , ,  + fo e - '~~  (3.3) 

where the constant fo is determined from the condition v = fn 0 in accordance with Eq. 
n=0 

(1.4). The behavior of the perturbation function (3.3) is analyzed in [3, 4] for the case 
e -8 << i. We note that the population condition Xv/Xv_, > I is not satisfied in the quasi- 
stationary regime. 

3) We shall consider the case of low gas temperatures T, important in practice. The 

of the binomial coefficients..(~/ and (~)in the sum (2.6)allows the whole system presence 

of vibrational levels to be separated naturally into the two regions n~v and n > v. Using 
this fact to calculate the sum in Eq. (2.6), we obtain the following expressions for the per- 
turbation function in the case e -8 ~ i: 

/0 (t) ---- ~,~] e--~ i - o - l / ~ l ) ~  - z_~V (__ I) m v' It_~_(l_e--m~/% ) ; (3.4) 
v,~ = i In . 

11 l )  m + n  ! ~/; ( 1  - - 0  -mr ' '% ' '  f n ( / ) = ~  (-- - m v m ;, 0 < n ~ v ; -  (3.5) 
17~7Z 

Z~.lo~ (--l)m'--~" n > O ,  v---O: ( 3 . 6 )  
17%~i 

(3.7) 

For t imes t > T1, Eqs. ( 3 . 4 ) - ( 3 . 7 ) ,  d e s c r i b i n g  the  complex process  o f  r e d i s t r i b u t i o n  of  mole- 
cu les  over the levels, simplify considerably and assume the form 

, ,  = , , =  o; (3s) 
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v 

l~ ZPlo = -'m ( l - e - t / ~ ' ) '  n=O, v>O; (3.9) 

,1 i ( t  - e - ~ m ) ,  0 < n ~< v; ( 3 . 1 0 )  

l,(t)= n ~ t e_,,o(l_e_t/~,) n>O, v=O; (3.11) 
ZPlo "m 

m = i  

e~~ e-~~ O ~ v < n .  (3.12) 1. (t) = Z~,o 

It follows from Eqs. (3.8)-(3.12) that in the present approximation the perturbation func- 
tion fn(t), which has an exponential dependence on time, has the form of a Boltzmann distri- 
bution in the region n > v, while in the region n~v it behaves like l/n~ For levels with 
n~v this distribution is attained at a rate which depends on n, while for levels with n > v 
it is attained simultaneously. In the case t/~1 ~ i, Eqs. (3.8)-(3.12) coincide with the results 
of [3, 4]. It is interesting to note that the perturbation of the distribution function of 
molecules over the vibrational levels in the present case is of a similar nature to that in- 
troduced by multiquantum laser pumping. 

The solution obtained above -- Eq. (2.6) -- is valid only for a ~-function source. In the 
case of an arbitrary source the distribution function for the molecules can be represented in 
the form of a superposition of solutions (2.6). 

The author is grateful to Professor A. I. Osipov and Professor P. K. Khabibullaev for 
discussions and for many observations. 

l~ 

2. 

3. 

4. 

5. 

6. 

LITERATURE CITED 

B. F. Gordiets, A. I. Osipov, E. V. Stupochenko, and L. A. Shelepin, "Vibrational relax- 
ation in gases and molecular lasers," Usp. Fiz. Nauk, 108, No. 4 (1972). 
V. N. Kondrat'ev and E. E. Nikitin, Kinetics and Mechanism of Gas-Phase Reactions [in 
Russian], Nauka, Moscow (1974). 
A. I. Osipov, "Conversion probability of vibrational energy of oxygen in collision with 
a molecule of nitrogen dioxide," Dokl. Akad. Nauk SSSR, 139, No. 2 (1961). 
A. I. Osipov, "Distribution of vibrational energy of molecules created by sources," 
Vestn. Mosk. Univ. No. 2 (1962). 
K. G. Valeev and O. A. Zhautykov, Infinite Systems of Differential Equations [in Rus- 
sian], Nauka, Alma-Ata (1974). 
E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves 
[in Russian], Nauka, Moscow (1965). 

763 


